Traveling Wave Solutions for a Coupled KdV Equations
نویسندگان
چکیده
منابع مشابه
Traveling Wave Solutions for the Painlevé-integrable Coupled Kdv Equations
We study the traveling wave solutions for a system of coupled KdV equations derived by Lou et al [11]. In that paper, they found 5 types of Painlevé integrable systems for the coupled KdV system. We show that each of them can be reduced to a partially or completely uncoupled system, through which the dynamical behavior of traveling wave solutions can be determined. In some parameter regions, ex...
متن کاملTravelling Wave Solutions for the Painlevé-integrable Coupled Kdv Equations
We study the travelling wave solutions for a system of coupled KdV equations derived by Lou et al [11]. In that paper, they found 5 types of Painlevé integrable systems for the coupled KdV system. We show that each of them can be reduced to a partially or completely uncoupled system, through which the dynamical behavior of travelling wave solutions can be determined. In some parameter regions, ...
متن کاملLower Bounds for Non-Trivial Traveling Wave Solutions of Equations of KdV Type
We prove that if a solution of an equation of KdV type is bounded above by a traveling wave with an amplitude that decays faster than a given linear exponential then it must be zero. We assume no restrictions neither on the size nor in the direction of the speed of the traveling wave.
متن کاملWater Wave Solutions of the Coupled System Zakharov-Kuznetsov and Generalized Coupled KdV Equations
An analytic study was conducted on coupled partial differential equations. We formally derived new solitary wave solutions of generalized coupled system of Zakharov-Kuznetsov (ZK) and KdV equations by using modified extended tanh method. The traveling wave solutions for each generalized coupled system of ZK and KdV equations are shown in form of periodic, dark, and bright solitary wave solution...
متن کاملPeriodic traveling wave solutions for a coupled map lattice
A type of coupled map lattice (CML) is considered in this paper. What we want to do is to define the form of a traveling wave solution and to reveal its existence. Due to the infinite property of the problem, we have tried the periodic case, which can be dealt with on a finite set. The main approach for our study is the implicit existence theorem. The results indicate that if the parameters of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: British Journal of Mathematics & Computer Science
سال: 2014
ISSN: 2231-0851
DOI: 10.9734/bjmcs/2014/5474